Time Allowed: 90 minutes
Maximum Points: 100

Answer all questions. Show intermediate steps and calculations wherever relevant. Figures in parantheses show points assigned for each part.

1. Consider the regression model:

$$Y_i = \beta_1 + \beta_2 X_i + \epsilon_i$$

where $E(e_i) = 0$, $var(e_i) = \sigma^2$, and $cov(e_i, e_j) = 0$ $(1 \neq j)$.

- a) Derive the OLS estimator $(\hat{\beta}_2)$. (5)
- b) Now define the variables

$$Z_i = \frac{Y_i - a}{b}$$
 and $W_i = \frac{X_i - C}{d}$.

Consider the regression

$$Z_i = \alpha_1 + \alpha_2 N_i + \mu_i$$
.

What is the relation between the OLS estimator of α_2 (\$\delta_2\$) and \$\beta_2\$? (10)

- c) Prove that regressions in parts (a) and (b) will have the same R². (5)
- d) How does the estimated variance of μ_{\perp} compare with the estimated variance of ϵ ,? (5)
- 2. The demand for Ceylonese tea in the U.S. is given by the equation:

 $\ln Q = \beta_0 + \beta_1 \ln P_C + \beta_2 \ln P_T + \beta_3 \ln P_B + \beta_4 \ln Y + u$

where Q = import of Ceylonese tea in the U.S;

 p_c = price of Ceylone tea;

 P_{τ} = price of Indian tea;

 P_{a} = price of Brazilian coffee;

y = disposable income in the U.S. M_C = \$ value of Ceylone tea imported in the U.S.

following regressions were obtained from n = 22 The observations.

 $\ln Q = 2.837 - 1.481 \ln P_{\zeta} + 1.181 \ln P_{I} + 0.186 \ln P_{I}$ (2.0) (0.987) (0.690) (0.134) + 0.257 ln Y

ESS = 0.4277. ~ U (0.370) $\ln M_{c} = -0.738 + 0.199 \ln P_{b} + 0.261 \ln Y \\
(0.820) (0.155) (0.165)$ ESS = 0.6788.— R Figures in paranthese are standard errors.

 $H_0: \beta_2=-1; \beta_2=0, \beta_3, \beta_4\neq0;$ against $H_1: \beta_1 \neq 0 \quad (i=1,2,3,4).$

Explain how one can test

(a)

using the information provided. (5) (b) Use the F test at the 5% level of significance to test the null hypothesis in part (a) . (5)

(c) What is the economic significance of the results? (5)

 $Y_{i} = \beta X_{i} + \epsilon_{i}$

(5)

where $E(ee') = \sigma^2 I$. (5) Derive the OLS estimator for β (β).

Consider an alternative estimator
$$\overline{\beta} = \frac{\sum_{i} Y_{i}}{\sum_{i} X_{i}}.$$

Prove that $\overline{\beta}$ is an unbiased estimator.

Derive the varainces of β and $\overline{\beta}$. (8)

- Prove that $var(\hat{\beta}) < var(\overline{\beta})$. (7)
- 4. Consider the k-variable regression

 - E(e) = 0; $E(ee') = \sigma^2 I$.
 - Now consider the OLS residuals

 - Prove that $E(\theta) = 0$. (5)
 - Derive |E(66')| and show that $E(66') \neq \sigma^2 I$.

 - Consider now the regression
- Prove that the R^2 for this regression will

 - The following summary data relate to n = 5 observations:

 $Y_1 = \beta_1 + \beta_2 X_{12} + \beta_3 X_{13} + \epsilon_1$

- The data provided above were used to estimate the regression:

a)

- where each e_1 is independently distributed as $N(0, a^2)$.
- The OLS estimators were :
- $\beta_1 = 4$; $\beta_2 = 2.5$; $\beta_3 = -1.5$; $\delta^2 = 13.25$.
- - Test at the 10% level of significance the hypothesis $H_0: \beta_2=2$ using the to test. (5)
- b) Test at the 5% level of significance the hypothesis
 - $H:\beta,+\beta,-0$ using the F-test. (10)

- I- X(XX)X
- where $\hat{\beta} = (X'X)^{-1}X'y$. $\hat{e} = y x(x'X)^{-1}x'y = Hy$. $\hat{e}(\hat{e}) \Rightarrow M(xB+P) = Me$

* Trank